首页 | 本学科首页   官方微博 | 高级检索  
     


Stabilised finite element methods for a bending moment formulation of the Reissner-Mindlin plate model
Authors:Gabriel?R.?Barrenechea  author-information"  >  author-information__contact u-icon-before"  >  mailto:gabriel.barrenechea@strath.ac.uk"   title="  gabriel.barrenechea@strath.ac.uk"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Tomás?P.?Barrios,Andreas?Wachtel
Affiliation:1.Department of Mathematics and Statistics,University of Strathclyde,Glasgow,Scotland;2.Departamento de Matemática y Física Aplicadas,Universidad Católica de la Santísima Concepción,Concepción,Chile
Abstract:This work presents new stabilised finite element methods for a bending moments formulation of the Reissner-Mindlin plate model. The introduction of the bending moment as an extra unknown leads to a new weak formulation, where the symmetry of this variable is imposed strongly in the space. This weak problem is proved to be well-posed, and stabilised Galerkin schemes for its discretisation are presented and analysed. The finite element methods are such that the bending moment tensor is sought in a finite element space constituted of piecewise linear continuos and symmetric tensors. Optimal error estimates are proved, and these findings are illustrated by representative numerical experiments.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号