首页 | 本学科首页   官方微博 | 高级检索  
     


Chronic exposure of cultured bovine endothelial cells to oxidized LDL abolishes prostacyclin release
Authors:E Thorin  CA Hamilton  MH Dominiczak  JL Reid
Affiliation:University of Glasgow, Department of Medicine and Therapeutics, Western Infirmary, UK.
Abstract:We investigated the effect of chronic exposure (3 days) with low-density lipoprotein (LDL) and oxidized (Ox)-LDL on the unstimulated and stimulated formation of prostacyclin (6-keto-prostaglandin [PG]F1 alpha) and total inositol phosphates (IPs) by cultured bovine aortic endothelial cells. Neither basal nor bradykinin-stimulated (1 to 10 nmol/L) formation of 6-keto-PGF1 alpha was affected by LDL, except at the highest concentration of bradykinin tested (100 nmol/L). In the presence of the antioxidants N-acetyl-L-cysteine (NAC, 10 mumol/L) or vitamin E (100 mumol/L), basal and bradykinin-stimulated formation of 6-keto-PGF1 alpha was potentiated by 20 micrograms protein/mL of LDL. Ox-LDL decreased unstimulated formation of the eicosanoid from 3.1 +/- 0.2 pg/micrograms protein in control cells to 1.6 +/- 0.1 and 0.5 +/- 0.1 pg/microgram protein after 3-day incubation with 5 and 20 micrograms protein/mL of Ox-LDL, respectively (P < .05). As in the basal state, Ox-LDL decreased bradykinin-induced 6-keto-PGF1 alpha formation. NAC or vitamin E did not influence Ox-LDL-induced endothelial cell changes in eicosanoid production. IPs formation by endothelial cells increased to a similar extent in the presence of 20 micrograms protein/mL of either LDL or Ox-LDL. However, no change was apparent in the bradykinin (10 mumol/L)-induced increase in total IPs formation after incubation with the lipoproteins. The data indicate that chronic exposure to Ox-LDL abolishes the production of prostacyclin by cultured endothelial cells. The oxidatively modified lipoprotein seems to more specifically affect the prostacyclin pathway.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号