首页 | 本学科首页   官方微博 | 高级检索  
     


A comparative study on the preparation and characterization of aromatic and aliphatic bismaleimides‐modified polyurethane–epoxy interpenetrating polymer network matrices
Authors:K P O Mahesh  M Alagar  S Jothibasu
Abstract:Interpenetrating polymer networks of bismaleimide‐modified polyurethane–epoxy systems were prepared using the aliphatic and aromatic bismaleimides‐ and polyurethane‐modified epoxy and cured in the presence of 4,4′‐diaminodiphenylmethane. Infrared spectral analysis was used to confirm the polyurethane‐crosslinked epoxy (PU–EP). The matrices developed were characterized by mechanical, thermal, electrical, and morphological studies. The results obtained from the mechanical studies indicate that the incorporation of polyurethane and bismaleimides into epoxy increased the tensile strength, flexural strength, and impact strength, according to their nature and percentage concentration. The results obtained from the thermal and electrical studies indicate that the incorporation of polyurethane into epoxy decreased the thermal properties (glass transition temperature, heat distortion temperature (HDT), thermal stability) and electrical properties (dielectric strength, volume and surface resistivity, and arc resistance). The incorporation of aromatic bismaleimide into the polyurethane‐modified epoxy system increased the glass transition temperature, thermal stability, and electrical properties. Decreased values of glass transition and HDT were obtained in the case of aliphatic bismaleimide‐modified polyurethane–epoxy system. Surface morphology of modified epoxy systems was studied using scanning electron microscopy, and it was found that the polyurethane‐modified epoxy systems exhibited heterogeneous morphology and bismaleimides‐modified epoxy systems showed a homogeneous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3592–3602, 2006
Keywords:epoxy resin  bismaleimides  polyurethane  glass transition temperature  electrical properties  morphology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号