Abstract: | Melt index is considered an important quality variable determining product specifications. Reliable prediction of melt index (MI) is crucial in quality control of practical propylene polymerization processes. In this paper a least squares support vector machines (LS‐SVM) soft‐sensor model of propylene polymerization process is developed to infer the MI of polypropylene from other process variables. Considering the use of a SSE cost function without regularization might lead to less robust estimates; the weighted least squares support vector machines (weighted LS‐SVM) approach of propylene polymerization process is further proposed to obtain a robust estimation of melt index. The performance of standard SVM model is taken as a basis of comparison. A detailed comparison research among the standard SVM, LS‐SVM, and weighted LS‐SVM models is carried out. The research results confirm the effectiveness of the presented methods. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 285–289, 2006 |