首页 | 本学科首页   官方微博 | 高级检索  
     


Melt index prediction by weighted least squares support vector machines
Authors:Jian Shi  Xinggao Liu
Abstract:Melt index is considered an important quality variable determining product specifications. Reliable prediction of melt index (MI) is crucial in quality control of practical propylene polymerization processes. In this paper a least squares support vector machines (LS‐SVM) soft‐sensor model of propylene polymerization process is developed to infer the MI of polypropylene from other process variables. Considering the use of a SSE cost function without regularization might lead to less robust estimates; the weighted least squares support vector machines (weighted LS‐SVM) approach of propylene polymerization process is further proposed to obtain a robust estimation of melt index. The performance of standard SVM model is taken as a basis of comparison. A detailed comparison research among the standard SVM, LS‐SVM, and weighted LS‐SVM models is carried out. The research results confirm the effectiveness of the presented methods. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 285–289, 2006
Keywords:polypropylene  computer modeling  weighted least squares support vector machines  melt
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号