首页 | 本学科首页   官方微博 | 高级检索  
     


Nonisothermal crystallization kinetics of poly(butylene terephthalate)/montmorillonite nanocomposites
Authors:Defeng Wu  Chixing Zhou  Xie Fan  Dalian Mao  Zhang Bian
Abstract:The melt intercalation method was employed to prepare poly(butylene terephthalate) (PBT)/montmorillonite (MMT) nanocomposites, and the microstructures were characterized with X‐ray diffraction and transmission electron microscopy. Then, the nonisothermal crystallization behavior of the nanocomposites was studied with differential scanning calorimetry (DSC). The DSC results showed that the exothermic peaks for the nanocomposites distinctly shifted to lower temperatures at various cooling rates in comparison with that for pure PBT, and with increasing MMT content, the peak crystallization temperature of the PBT/MMT hybrids declined gradually. The nonisothermal crystallization kinetics were analyzed by the Avrami, Jeziorny, Ozawa, and Mo methods on the basis of the DSC data. The results revealed that very small amounts of clay (1 wt %) could accelerate the crystallization process, whereas higher clay loadings reduced the rate of crystallization. In addition, the activation energy for the transport of the macromolecular segments to the growing surface was determined by the Kissinger method. The results clearly indicated that the hybrids with small amounts of clay presented lower activation energy than PBT, whereas those with higher clay loadings showed higher activation energy. The MMT content and the crystallization conditions as well as the nature of the matrix itself affected the crystallization behavior of the hybrids. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3257–3265, 2006
Keywords:crystallization  kinetics (polym  )  nanocomposites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号