首页 | 本学科首页   官方微博 | 高级检索  
     

多尺度卷积神经网络检测睡眠呼吸暂停
引用本文:王 涛,鲁昌华,孙怡宁,蒋文钢. 多尺度卷积神经网络检测睡眠呼吸暂停[J]. 电子测量与仪器学报, 2021, 35(7): 30-35
作者姓名:王 涛  鲁昌华  孙怡宁  蒋文钢
作者单位:合肥工业大学计算机与信息学院 合肥230601;中国科学院合肥智能机械研究所 合肥230031;黄山风景区管理委员会 黄山245800
基金项目:中科院STS重大项目(KFJ STS ZDTP 079)资助
摘    要:睡眠呼吸暂停综合征作为一种常见的与睡眠相关的呼吸障碍性疾病,受到众多的关注。由于其复杂的检诊断过程及昂贵的价格,吸引了众多研究学者探索基于单通道信号的快速、便捷检测方法。基于心电信号(ECG)提出了一种多尺度卷积神经网络睡眠呼吸暂停快速检测方法,与常规的单尺度卷积神经网络方法相比,该方法可以有效地结合信号的细节信息和抽象信息,提升卷积神经网络的特征呈现能力。通过PhysioNet提供的Apnea-ECG数据库进行验证,多尺度卷积神经网络获得了85.2%准确率、83.1%敏感性和86.5%特异性。与现有方法相比,该方法进一步提升了睡眠呼吸暂停的检测性能。

关 键 词:多尺度  卷积神经网络  睡眠呼吸暂停  RR间隔  R峰信号

Multi-scale convolutional neural network for sleep apnea detection
Wang Tao,Lu Changhu,Sun Yining,Jiang Wengang. Multi-scale convolutional neural network for sleep apnea detection[J]. Journal of Electronic Measurement and Instrument, 2021, 35(7): 30-35
Authors:Wang Tao  Lu Changhu  Sun Yining  Jiang Wengang
Affiliation:1. School of Computer and Information, Hefei University of Technology;2. Institute of Intelligent Machines, Chinese Academy of Sciences; 3. Huangshan Scenic Spot Management Committee
Abstract:Sleep apnea syndrome, as a common sleep-related respiratory disorder, has gained a lot of attention. Due to its complicateddiagnosis process and high price, it has attracted many researchers to explore fast and convenient detection methods based on singlechannel signals. The research proposes a multi-scale convolutional neural network method for rapid detection of sleep apnea based onECG signals. Compared with the traditional single-scale convolutional neural network, the method can effectively combine the detailedand abstract information of the signal, and improve the feature representation ability of the convolutional neural network. By verifying onthe Apnea-ECG database provided by PhysioNet, the proposed multi-scale convolutional neural network obtains an accuracy of 85. 2%,sensitivity of 83. 1% and specificity of 86. 5%. Compared with existing methods, the method further improves the performance of sleepapnea detection.
Keywords:multi-scale   convolutional neural network   sleep apnea   RR intervals   R-peaks signal
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号