首页 | 本学科首页   官方微博 | 高级检索  
     

动态工况电池在线参数辨识及SOC估计研究
引用本文:孙鹏宇,李建良,陶知非,李淑清. 动态工况电池在线参数辨识及SOC估计研究[J]. 电子测量与仪器学报, 2021, 35(1): 10-17
作者姓名:孙鹏宇  李建良  陶知非  李淑清
作者单位:天津科技大学电子信息与自动化学院天津300222;中国石油集团东方地球物理勘探有限责任公司涿州072750
基金项目:国家高技术研究发展计划(863计划)(2012AA061201)资助项目
摘    要:基于电池模型的荷电状态(SOC)估计方法,其估计精度主要取决于模型的精度。电池在动态工况下,输入电流变化激烈,传统的辨识方法因其收敛性差,导致模型精度降低。为了提高动态工况下电池模型精度,对传统带遗忘因子最小二乘法(FFRLS)进行改进,通过设置精度阈值,引入梯度矫正的方法,提出了改进带遗忘因子递推最小二乘法(IFFRLS)。利用改进算法进行在线参数辨识,建立二阶RC等效电路模型,与其他传统参数辨识建立的模型进行对比,验证IFFRLS对模型精度提高的有效性,模型平均误差为0.003 8 V。最后,将不同辨识方法所建立的模型与扩展卡尔曼滤波(EKF)算法进行联合估计SOC并对比其误差,结果表明通过IFFRLS辨识出来的高精度模型可有效提高SOC的估计精度,DST工况下,误差在1.51%以内。

关 键 词:SOC估计;参数辨识;最小二乘法;梯度矫正;扩展卡尔曼滤波

Research on online parameter identification and SOC estimation of battery under dynamic conditions
Sun Pengyu,Li Jianliang,Tao Zhifei,Li Shuqing. Research on online parameter identification and SOC estimation of battery under dynamic conditions[J]. Journal of Electronic Measurement and Instrument, 2021, 35(1): 10-17
Authors:Sun Pengyu  Li Jianliang  Tao Zhifei  Li Shuqing
Affiliation:Tianjin University of Science and Technology, College of Electronic Information and Automation, Tianjin 300222, China;Bureau of Geophysical Prospecting INC, China National Petroleum Corporation, Zhuozhou 072750, China
Abstract:The digital twin of flexible production line can realize the real time perception of the operation state of flexible production process, and optimize production by using twin data. For this reason, a state aware method of flexible production line based on digital twin is proposed. The architecture of the method is established firstly, and three key technologies in the system implementation are discussed in detail: the construction of digital twin model based on unity 3D, the real time acquisition of heterogeneous equipment data based on OPC UA, and the state perception and evaluation based on twin model. Finally, based on a flexible production workshop, the state perception and fault diagnosis are realized, and the feasibility and effectiveness of the proposed method are verified, which provides an effective solution for the realization of the state perception of the flexible production line.
Keywords:SOC estimation   parameter identification   least square method   gradient correction   extended Kalman filter
本文献已被 CNKI 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号