Enhanced functionalities of whey proteins treated with supercritical carbon dioxide |
| |
Authors: | Zhong Q Jin M |
| |
Affiliation: | Department of Food Science and Technology, University of Tennessee, Knoxville 37996 |
| |
Abstract: | The functionality of whey proteins can be modified by many approaches; for example, via complexation with carbohydrates, enzymatic cross-linking, or hydrolysis, and the objective of this work was to research the effects of supercritical carbon dioxide (scCO2) treatments on the functionalities of commercial whey protein products including whey protein isolates (WPI) and whey protein concentrates (WPC). The WPI and WPC powders and a 10% (wt/vol) WPI solution were treated with scCO2. The WPI solution was treated at 40°C and 10 MPa for 1 h, whereas WPI and WPC powders were treated with scCO2 at 65°C and 10 or 30 MPa for 1 h. Dynamic rheological tests were used to characterize gelation properties before and after processing. Compared with the unprocessed samples and samples processed with N2 under similar conditions, scCO2-treated WPI, whether dispersed in water or in the powder form during treatments, formed a gel with increased strength. The improvement in gelling properties was more significant for the scCO2-treated WPC. In addition, the scCO2-processed WPI and WPC powders appeared to be fine and free-flowing, in contrast to the clumps in the unprocessed samples. Proximate compositional and surface hydrophobicity analyses indicated that both compositional and structural changes may have contributed to enhanced whey protein functionalities. The results suggest that functionalities of whey proteins can be improved by scCO2 treatment to produce novel ingredients. |
| |
Keywords: | whey protein supercritical carbon dioxide functionality rheology |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|