首页 | 本学科首页   官方微博 | 高级检索  
     

粒子群与多种群元胞遗传混合优化算法
引用本文:黎明,揭丽琳,鲁宇明. 粒子群与多种群元胞遗传混合优化算法[J]. 模式识别与人工智能, 2012, 25(4): 610-616
作者姓名:黎明  揭丽琳  鲁宇明
作者单位:南昌航空大学信息工程学院南昌330063
基金项目:国家自然科学基金(No.60963002);江西省自然科学基金(No.2009GZS0090)资助项目
摘    要:元胞遗传算法通过限定个体之间的相互作用邻域提高算法的全局收敛率,但在一定程度降低搜索效率。文中提出一种粒子群与多种群元胞遗传混合优化算法。首先将群体分割成多个相互之间没有邻域关系的元胞子种群,适度降低算法的选择压力,从而更好地保持种群的多样性。算法的变异操作被粒子群算法替代,使得局部搜索能力明显提高。元胞群体分割和粒子群变异较好地均衡全局探索和局部寻优之间的关系。分析混合算法的选择压力和多样性变化规律。实验结果表明,该算法在保证搜索效率较高的同时还显著提高元胞遗传算法的全局收敛率且稳定性得到明显改善。

关 键 词:元胞遗传算法  粒子群算法  种群分割  选择压力  多样性  
收稿时间:2011-07-25

A Hybrid Particle Swarm and Multi-Population Cellular Genetic Algorithm
LI Ming , JIE Li-Lin , LU Yu-Ming. A Hybrid Particle Swarm and Multi-Population Cellular Genetic Algorithm[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(4): 610-616
Authors:LI Ming    JIE Li-Lin    LU Yu-Ming
Affiliation:School of Information Engineering,Nanchang Hangkong University,Nanchang 330063
Abstract:Cellular genetic algorithm (CGA) enhances global convergence rate via constraining individual interaction in its neighbor. However, it results in of low search efficiency. An algorithm, called hybrid particle swarm and multi-population cellular genetic algorithm (HPCGA), is proposed. Firstly, the whole population is divided into some sub-populations,the individuals in different sub-populations do not interact each other. Nevertheless different sub-populations can communicate with each other via immigrant and share the evolutionary information. Division of the population appropriately reduces the selection pressure, and thus the individual diversity is maintained more effectively. The mutation of CGA is replaced by particle swarm optimization to improve the ability of local search. The above two improvements balance the trade-off between global exploration and local exploitation. Selection pressure and individual diversity of the proposed HPCGA are also studied. Optimization of six typical functions is carried out by using the proposed HPCGA and CGA. The experimental results show that the performance of the proposed HPCGA is obviously superior to that of CGA in global convergence rate, convergence speed and stability.
Keywords:Cellular Genetic Algorithm  Particle Swarm Optimization  Population Segmentation  Selection Pressure  Individual Diversity  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号