基于多层次信息融合的多跳机器阅读理解 |
| |
作者姓名: | 朱海飞 段宗涛 王全伟 曹建荣 席铁钧 |
| |
作者单位: | 长安大学 信息工程学院, 西安 710064;豫西工业集团 河南北方红阳机电有限公司, 南阳 474679 |
| |
基金项目: | 陕西省重点研发计划(2019ZDLGY17-08); 陕西省特支计划科技创新领军人才项目(TZ0366) |
| |
摘 要: | 以往机器阅读理解模型中存在文本特征提取单一, 文本和问题的交互信息不全面等问题, 导致模型不能充分对文本进行理解, 本文提出了一种多层次信息融合的机器阅读理解模型. 通过在不同位置使用不同方法, 对文本信息进行多种层次的获取. 使用膨胀卷积网络捕捉文本的全局信息, 采用双向注意力机制和自注意力机制融合文本和问题之间的交互信息, 通过指针网络预测答案及其对应的支撑句. 该模型在CAIL2019和CAIL2020阅读理解数据集上训练的联合F1值分别达到50.09%和58.44%, 相比于其他基线模型取得了明显的性能提升.
|
关 键 词: | 多跳机器阅读理解 注意力机制 信息融合 |
收稿时间: | 2024-01-27 |
修稿时间: | 2024-02-29 |
|
| 点击此处可从《计算机系统应用》浏览原始摘要信息 |
|
点击此处可从《计算机系统应用》下载免费的PDF全文 |
|