首页 | 本学科首页   官方微博 | 高级检索  
     


A single bioavailability model can accurately predict Ni toxicity to green microalgae in soft and hard surface waters
Authors:Nele M.E. Deleebeeck  Frederik De Laender
Affiliation:a Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent, Belgium
b SBAE Industries NV, B-9950 Waarschoot, Belgium
c Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
Abstract:The major research questions addressed in this study were (i) whether green microalgae living in soft water (operationally defined water hardness <10 mg CaCO3/L) are intrinsically more sensitive to Ni than green microalgae living in hard water (operationally defined water hardness >25 mg CaCO3/L), and (ii) whether a single bioavailability model can be used to predict the effect of water hardness on the toxicity of Ni to green microalgae in both soft and hard water. Algal growth inhibition tests were conducted with clones of 10 different species collected in soft and hard water lakes in Sweden. Soft water algae were tested in a ‘soft’ and a ‘moderately hard’ test medium (nominal water hardness = 6.25 and 16.3 mg CaCO3/L, respectively), whereas hard water algae were tested in a ‘moderately hard’ and a ‘hard’ test medium (nominal water hardness = 16.3 and 43.4 mg CaCO3/L, respectively). The results from the growth inhibition tests in the ‘moderately hard’ test medium revealed no significant sensitivity differences between the soft and the hard water algae used in this study. Increasing water hardness significantly reduced Ni toxicity to both soft and hard water algae. Because it has previously been demonstrated that Ca does not significantly protect the unicellular green alga Pseudokirchneriella subcapitata against Ni toxicity, it was assumed that the protective effect of water hardness can be ascribed to Mg alone. The log KMgBL (= 5.5) was calculated to be identical for the soft and the hard water algae used in this study. A single bioavailability model can therefore be used to predict Ni toxicity to green microalgae in soft and hard surface waters as a function of water hardness.
Keywords:Nickel   Field-collected algae   Water hardness   Bioavailability   Risk assessment   Biotic ligand model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号