首页 | 本学科首页   官方微博 | 高级检索  
     

一种大数据集上的非线性PSVM训练方法
引用本文:单莘,朱永宣,郭军. 一种大数据集上的非线性PSVM训练方法[J]. 微电子学与计算机, 2006, 23(7): 20-23
作者姓名:单莘  朱永宣  郭军
作者单位:北京邮电大学信息工程学院,北京,100876
基金项目:重庆市应用基础研究基金
摘    要:PSVM作为一种新型SVM方法,避免了求解二次规划问题,具有更快的计算速度,但对于大规模数据集,采用传统方法求解非线性PSVM面临大矩阵求逆的困难。文章基于共轭梯度法结合低秩估计提出了一个大数据集上的非线性PSVM训练方法NPSVM-LD,通过多次迭代的矩阵乘积运算避免了对大矩阵的求逆。在UCI数据集上的实验表明。该方法能够在应用非线性核函数条件下,使PSVM有效处理规模在10000以内的训练集的情况。

关 键 词:支持向量机  共轭梯度法  低秩估计
文章编号:1000-7180(2006)07-004
收稿时间:2005-07-28
修稿时间:2005-07-28

A Training Method for Nonlinear PSVM on Large Datasets
SHAN Xin,ZHU Yong-xuan,GUO Jun. A Training Method for Nonlinear PSVM on Large Datasets[J]. Microelectronics & Computer, 2006, 23(7): 20-23
Authors:SHAN Xin  ZHU Yong-xuan  GUO Jun
Abstract:As a new method of SVM, PSVM works faster by avoiding solving quadratic programming problems. However, to solve nonlinear PSVM by traditional method has the difficulty in inverting a large-scale matrix. In this paper we present a training method for nonlinear PSVM on large datasets-NPSVM-LD which is based on the conjugate gradient method combined with low rank approximation. The method avoid inverting a large-scale matrix by iterative matrix multiplications. Experiments on UCI dataset indicate that the method enable nonlinear PSVM to tackle training sets whose scale is no more than 10000 efficiently.
Keywords:PSVM
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号