首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于小波变换和ARIMA的短期电价混合预测模型
引用本文:牛丽肖,王正方,臧传治,尚文利,张盛山. 一种基于小波变换和ARIMA的短期电价混合预测模型[J]. 计算机应用研究, 2014, 31(3): 688-691
作者姓名:牛丽肖  王正方  臧传治  尚文利  张盛山
作者单位:1. 中国科学院沈阳自动化研究所 网络化控制系统实验室, 沈阳 110016; 2. 中国科学院大学, 北京 100049
基金项目:国家自然科学基金资助项目(61100159); 中国科学院知识研究创新工程重要方向性项目(KGCX2-EW-104); 新疆地区科学合作基金资助项目(61164012)
摘    要:为在实时电价情况下预测未来24小时电价, 提出一种基于小波变换和差分自回归移动平均(ARIMA)的短期电价混合预测模型。该模型分别根据是否受到需求量影响使用ARIMA模型对多尺度小波变换分解后的时间序列进行预测。同时提出一种电价突变点发现和处理算法。使用澳大利亚新南威尔士州2012年真实数据验证表明, 相对ARIMA预测, 改进后的混合模型在不考虑需求量影响时预测精度更高; 电价突变点发现和处理算法能够准确处理电价异常点, 提高预测精度。

关 键 词:电价预测  小波变换  ARIMA模型  时间序列分析  电价突变

Hybrid model based on wavelet transform and ARIMA for short-term electricity price forecasting
NIU Li-xiao,WANG Zheng-fang,ZANG Chuan-zhi,SHANG Wen-li,ZHANG Sheng-shan. Hybrid model based on wavelet transform and ARIMA for short-term electricity price forecasting[J]. Application Research of Computers, 2014, 31(3): 688-691
Authors:NIU Li-xiao  WANG Zheng-fang  ZANG Chuan-zhi  SHANG Wen-li  ZHANG Sheng-shan
Affiliation:1. Laboratory of Networked Control Systems, Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang 110016, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:In order to forecast the next 24 hour's electricity price, this paper proposed a hybrid model based on wavelet transform and autoregressive integrated moving average(ARIMA) for short-term electricity price forecasting. According to whether considering the influence of demands, it used ARIMA to forecast the time series depcomposed by wavelet transform. It proposed an electricity price anomalies detect and process algorithm to handle the condition where price changed drastically. The numerial example based on the historical data of the Australian national electricity market, New South Wales, in the year 2012, shows that the hybrid model, not considering the influence of demands, got a more precise result than the ARIMA mo-del; electricity price anomalies detect and process algorithm can process the electricity price anomalies precisely and improve the predict accuracy.
Keywords:electricity price forecasting  wavelet transform  ARIMA model  time series analysis  electricity price anomalies
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号