首页 | 本学科首页   官方微博 | 高级检索  
     

基于加权扩展日特征矩阵的分布式光伏发电日前功率预测
引用本文:郑若楠,李国杰,韩蓓,汪可友,彭道刚. 基于加权扩展日特征矩阵的分布式光伏发电日前功率预测[J]. 电力自动化设备, 2022, 42(2): 99-105. DOI: 10.16081/j.epae.202112023
作者姓名:郑若楠  李国杰  韩蓓  汪可友  彭道刚
作者单位:上海交通大学 电力传输与功率变换控制教育部重点实验室,上海 200240;上海电力大学 自动化工程学院,上海 200090
基金项目:国家自然科学基金资助项目(51877133)
摘    要:分布式户用光伏发电系统的精确日前功率预测可为智能家庭优化运行提供依据,但历史数据量少和缺乏精确辐照预报数据的问题增大了预测难度.为此,将邻近多用户数据融合以扩充样本规模,提出一种考虑功率关联性和相关度权重的相似日搜索方法,并基于长短期记忆(LSTM)神经网络实现日前预测.分析光伏发电功率的影响因素及其内在相关性,基于天...

关 键 词:分布式光伏  日前功率预测  相关性  日特征矩阵  相似日  神经网络

Day-ahead power forecasting of distributed photovoltaic generation based on weighted expanded daily feature matrix
ZHENG Ruonan,LI Guojie,HAN Bei,WANG Keyou,PENG Daogang. Day-ahead power forecasting of distributed photovoltaic generation based on weighted expanded daily feature matrix[J]. Electric Power Automation Equipment, 2022, 42(2): 99-105. DOI: 10.16081/j.epae.202112023
Authors:ZHENG Ruonan  LI Guojie  HAN Bei  WANG Keyou  PENG Daogang
Affiliation:Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China
Abstract:Accurate day-ahead power forecasting of distributed household photovoltaic generation system can provide a basis for optimal operation of smart houses, but the problems of lack of historical data and precise irradiance forecasting data increase forecasting difficulty. Therefore, the sample scale is enlarged by integrating data from multiple users in the nearby area, a similar day selection method considering power correlation and relevant weight is proposed, and the day-ahead forecasting is realized based on LSTM(Long Short-Term Memory) neural network. The influencing factors of photovoltaic generation power and their internal correlation are analyzed, the day types are classified based on the statistical data of weather type, and the meteorological information, historical power information and Pearson product-moment correlation coefficient are used to construct the weighted expanded daily feature matrix. The photovoltaic power of similar day with minimum Euclidean distance of feature matrix of the day to be forecasted is selected from historical data, and it is input LSTM neural network model together with key meteorological features for forecasting. The validity of the proposed method is verified by the measured data of multiple users in Denver City of North America, the proposed method can be applied in the scene with limited historical data and can significantly reduce the forecasting error in multiple weather types.
Keywords:distributed photovoltaic   day-ahead power forecasting   correlation   daily feature matrix   similar day   neural network
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《电力自动化设备》浏览原始摘要信息
点击此处可从《电力自动化设备》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号