首页 | 本学科首页   官方微博 | 高级检索  
     


Flow pattern measurement in a full scale silo containing iron ore
Authors:J.F. Chen  J.M. Rotter  J.Y. Ooi  Z. Zhong
Affiliation:School of Engineering and Electronics, Institute for Infrastructure and Environment, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JN, Scotland, UK
Abstract:The flow pattern in a silo is important because it affects both the recovery of solids and the pressures on the silo wall during discharge. Wherever mass flow is not achieved, the boundary of the flow channel has significant implications for both the functional and structural design of the silo. Many techniques have been used for the study of flow patterns in model silos, but most cannot be used at full scale, and very few quality measurements at full scale have ever been made. This paper outlines a full scale experimental study in which the patterns of solids flow and the flow channel boundaries are reliably quantified.The full scale silo was specially designed, constructed and instrumented to exhibit funnel flow and to make observations of the solids flow pattern and the silo wall pressures. It had three outlets: one concentric, one fully eccentric and one in between. Three materials were used: iron ore pellets, slag fines and crushed basalt. This paper describes experiments involving iron ore pellets. The silo was seeded with radio frequency tags whose residence times were measured by detecting them on exit during discharge. The residence time data were studied to deduce the discharge flow pattern. This paper presents the results of three different flow pattern interpretation techniques: the best of them (mass-time relationships) is shown to give a very clear identification of the solids flow pattern and the flow channel boundary.
Keywords:Granular materials   Materials processing   Particulate solids   Flow visualisation   Flow patterns   Silos and hoppers   Residence times
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号