首页 | 本学科首页   官方微博 | 高级检索  
     


Utilisation de la clinoptilolite en potabilisation des eaux—elimination de l'ion NH4+Clinoptilolite in drinking water treatment for NH4+ removal
Authors:M Gaspard  A Neveu  G Martin
Affiliation:Laboratoire de Chimie des Eaux et de l''Environnement A, Ecole Nationale Superieure de Chimie de Rennes, Avenue du Général Leclerc, 35000 Rennes-Beaulieu, France
Abstract:The objective of this study is to develop a technique to remove ammonium ion from water intended for potable purposes. An ion exchange method is used with a selective ion exchanger, a natural cation zeolite, clinoptilolite. Glass columns (Fig. 1) are used for laboratory experiments. These experiments show that the NH4+ exchange capacity is very small compared to its total capacity 2.17 meq g?1; its value depends essentially on the NH4+ initial concentration and less on the Ca2+ concentration in the influent water. Figure 3 illustrates the practical exchange capacity relative to the initial concentration of ammonium ion for a soft water (Ca2+ = 35–50 mg l?1). We were particularly interested in waters weak in ammonium ion concentration (NH4+ = 1–3 mg l?1). In this case and for ~1 and 2 mg l?1 NH4+ concentration in water, the practical capacity is only 0.06 and 0.108 meq g?1 respectively. The leakage is smaller than the ECC limit (European Community Council) for drinking waters (NH4+ ? 0.5 mg l?1) and the treated volume of water to breakthrough, defined at 0.5 mg l?1 of NH4+, is ?720 BV (BV = bed volume) in both cases.In another way Fig. 6 shows that hard waters (due to Ca2+ ions) are more difficult to treat than soft waters. The practical capacity is smaller than before and the NH4+-leakage is greater. To lessen NH4+-leakage to less than 0.5 mg l?1 for soft waters down-flow and up-flow, regeneration is used. Figure 7 shows that up-flow regeneration is more attractive than down-flow regeneration.Cycle reproducibility (Figs 4 and 5) shows that the regeneration conditions satisfied our requirements: in this case, the salt consumption is 180 eq of salt per eq of NH4+ eliminated. This prompted us to try to reuse the regenerant (with NH4+ ion). An increase of NH4+-leakage is noticed in the presence of an NH4+-residual in the regenerant. This increase is more significant with down-flow regeneration.After these laboratory experiments, we carried out a semi-industrial pilot-plant. Our objective was first to verify the laboratory results and secondly to study clinoptilolite behaviour relative to the time it was used. Two plexiglass columns comprise the pilot-plant shown in Fig. 9; soft water is used for these experiments. The first column is regenerated with fresh salt solution. The cycles obtained, considering their initial NH4+-concentration, are reproduced in Fig. 10. For 2 mg l?1 NH4+ in the influent water, the leakage is about 0.2 mg l?1 and the treated volume to breakthrough (0.5 mg l?1 of NH4+) is about 750 BV. The second column is regenerated with a recycled solution. The quality of the cycles decreases with the number of reuse of the regenerant as shown in Fig. 11. Nevertheless, it is interesting to note that after 3 reuses, the performance decrease is only 25% and the leakage, although it increases is smaller than 0.5 mg l?1.Pilot results allowed us to propose a treatment of 30,000 m3 day?1; the cost per cubic meter water treated, relative to NH4+-removal, is about 0.165 FF (0.033 US $) for a plant and 0.77 FF (0.014 US $) for the same plant at the seaside. Using two serial columns decreased the cost by about 40–50%.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号