首页 | 本学科首页   官方微博 | 高级检索  
     


Dopamine modulates inwardly rectifying hyperpolarization-activated current (Ih) in cultured rat olfactory receptor neurons
Authors:G Vargas  MT Lucero
Affiliation:Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA.
Abstract:The presence of dopamine receptors in olfactory receptor neurons (ORNs) suggests that odor sensitivity may be modulated by neurotransmitters at the level of primary sensory neurons. Using standard patch-clamp techniques on rat ORNs, we found that 1 microM dopamine, 500 microM SQ 22536 (SQ, an adenylyl cyclase inhibitor), 20 and 50 microM quinpirole (a selective dopamine D2 receptor agonist), and 1 mM adenosine 3', 5'-cyclic monophosphate (cAMP) modulate the hyperpolarization-activated current Ih. On hyperpolarizing from a holding potential of -58 mV, a small Cs+-sensitive inwardly rectifying current (Ih) was observed. Increases in extracellular K+ increased Ih amplitude without shifting its voltage dependence of activation, whereas increases in temperature produced an increase in Ih amplitude and a hyperpolarizing shift in the activation curve. Application of 1 microM dopamine reversibly shifted Ih activation to more negative potentials and decreased Ih current amplitudes. These effects were blocked by concomitant application of dopamine with sulpiride, a selective dopamine D2 receptor antagonist. The effects of dopamine were mimicked by quinpirole. Quinpirole (20 microM) decreased Ih current amplitude, but was without effect on Ih voltage dependence of activation. However, 50 microM quinpirole produced both a reduction of Ih peak currents and a hyperpolarizing shift in the activation curve for Ih. External application of the adenylyl cyclase inhibitor SQ 22536 produced a reversible decrease in peak currents but had no effect on Ih voltage dependence of activation, whereas internal application of cAMP shifted Ih activation to more depolarized potentials. Because Ih modulates cell excitability and spike frequency adaptation, our findings support a role for dopamine in modulating the sensitivity and output of rat ORNs to odorants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号