首页 | 本学科首页   官方微博 | 高级检索  
     

模糊多类SVM模型
引用本文:李昆仑,黄厚宽,田盛丰. 模糊多类SVM模型[J]. 电子学报, 2004, 32(5): 830-832
作者姓名:李昆仑  黄厚宽  田盛丰
作者单位:1. 北京交通大学计算机与信息技术学院,北京 100044;2. 河北大学计算机学院,河北保定 071002
基金项目:国家科技攻关项目,河北省自然科学基金
摘    要:利用SVM处理多类分类问题,是当前的研究热点之一.本文提出了一种模糊多类支持向量机模型,即FMSVM.该方法是在Weston等人提出的多类SVM模型中引入模糊成员函数,针对每个输入数据对分类结果的不同影响,该模糊成员函数得到相应的值,由此得到不同的惩罚值.从而在构造分类超平面时,可以忽略那些对分类结果影响很小的数据.理论分析与数值实验都表明,该算法具有良好的鲁棒性.

关 键 词:多类分类  支持向量机(SVM)  模糊成员函数  
文章编号:0372-2112(2004)05-0830-03
收稿时间:2003-07-20

Fuzzy Support Vector Machine for Multi-Class Classification
LI Kun-lun ,,HUANG Hou-kuan,TIAN Sheng-feng. Fuzzy Support Vector Machine for Multi-Class Classification[J]. Acta Electronica Sinica, 2004, 32(5): 830-832
Authors:LI Kun-lun     HUANG Hou-kuan  TIAN Sheng-feng
Affiliation:1. School of Computer & Information Technology,Beijing Jiaotong University,Beijing 100044,China;2. School of Computer Science,Hebei University,Baoding,Hebei 071002,China
Abstract:How to process multi-class problem with SVM is one of the present research focuses.We propose a fuzzy multi-class SVM model referred as FMSVM.It is constructed by introducing a fuzzy membership function to the penalty in the quadratic problem of Weston and Watkins,the membership function acquire different values for each input data according to their different affects on the classification results.Hence,we can ignore the data,which affect the classification result a little.Therefore different input points can make different contributions to the learning of the decision surface,i.e.,the optimal separating hyper-plane.Both theoretical analysis and digital experiment results show that the model proposed here works very well on benchmark data sets and also has the property of robustness.
Keywords:multi-class classification  support vector machine (SVM)  fuzzy membership function
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号