首页 | 本学科首页   官方微博 | 高级检索  
     


A genetic and set partitioning two-phase approach for the vehicle routing problem with time windows
Authors:G.B. Alvarenga  G.R. Mateus  G. de Tomi
Affiliation:1. Department of Computer Science, Federal University of Lavras, UFLA, Lavras - Brazil;2. Department of Computer Science, Federal University of Minas Gerais, UFMG, Belo Horizonte - Brazil;3. Department of Mining and Petroleum Engineering, University of São Paulo, USP, São Paulo - Brazil
Abstract:The Vehicle Routing Problem with Time Windows (VRPTW) is a well-known and complex combinatorial problem, which has received considerable attention in recent years. This problem has been addressed using many different techniques including both exact and heuristic methods. The VRPTW benchmark problems of Solomon [Algorithms for the vehicle routing and scheduling problems with time window constraints, Operations Research 1987; 35(2): 254–65] have been most commonly chosen to evaluate and compare all algorithms. Results from exact methods have been improved considerably because of parallel implementations and modern branch-and-cut techniques. However, 24 out of the 56 high order instances from Solomon's original test set still remain unsolved. Additionally, in many cases a prohibitive time is needed to find the exact solution. Many of the heuristic methods developed have proved to be efficient in identifying good solutions in reasonable amounts of time. Unfortunately, whilst the research efforts based on exact methods have been focused on the total travel distance, the focus of almost all heuristic attempts has been on the number of vehicles. Consequently, it is more difficult to compare and take advantage of the strong points from each approach. This paper proposes a robust heuristic approach for the VRPTW using travel distance as the main objective through an efficient genetic algorithm and a set partitioning formulation. The tests were produced using real numbers and truncated data type, allowing a direct comparison of its results against previously published heuristic and exact methods. Furthermore, computational results show that the proposed heuristic approach outperforms all previously known and published heuristic methods in terms of the minimal travel distance.
Keywords:Vehicle routing problem   Hybrid algorithm   Genetic algorithm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号