首页 | 本学科首页   官方微博 | 高级检索  
     


Reverse logistics network design with stochastic lead times
Authors:Kris Lieckens  Nico Vandaele
Affiliation:Faculty of Applied Economics, University of Antwerp, Prinsstraat 13-2000 Antwerp, Belgium
Abstract:This work is concerned with the efficient design of a reverse logistics network using an extended version of models currently found in the literature. Those traditional, basic models are formulated as mixed integer linear programs (MILP-model) and determine which facilities to open that minimize the investment, processing, transportation, disposal and penalty costs while supply, demand and capacity constraints are satisfied. However, we show that they can be improved when they are combined with a queueing model because it enables to account for (1) some dynamic aspects like lead time and inventory positions, and (2) the higher degree of uncertainty inherent to reverse logistics. Since this extension introduces nonlinear relationships, the problem is defined as a mixed integer nonlinear program (MINLP-model). Due to this additional complexity, the MINLP-model is presented for a single product-single-level network. Several examples are solved with a genetic algorithm based on the technique of differential evolution.
Keywords:Location   Queueing   Network flows   Supply chain management   Differential evolution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号