首页 | 本学科首页   官方微博 | 高级检索  
     

基于复Contourlet域的支持向量机和Krawtchouk矩的双水印算法
引用本文:吴一全,史骏鹏. 基于复Contourlet域的支持向量机和Krawtchouk矩的双水印算法[J]. 光电子.激光, 2014, 0(11): 2170-2177
作者姓名:吴一全  史骏鹏
作者单位:南京航空航天大学 电子信息工程学院,江苏 南京 210016 ;南京理工大学 江苏省 社会安全图像与 视频理解重点实验室,江苏 南京 210094;南京航空航天大学 电子信息工程学院,江苏 南京 210016
基金项目:国家自然科学基金(60872065)、江苏省社会安全图像与视频理解 重点实验室(南京理工大学)开放基金(JSKL201302)和江苏高校优势学科建设工 程资助项目 (1.南京航空航天大学 电子信息工程学院,江苏 南京 210016; 2.南京理工大学 江苏省社会安全图像与 视频理解重点实验室,江苏 南京 210094)
摘    要:为了进一步提高基于支持向量机(SVM)水印算法的 鲁棒性,提出了一种 基于复Contourlet域的SVM和Krawtchouk矩的双水印算法。首先从RGB宿主 图像中提取B 分量和G分量,并且充分利用Krawtchouk矩不变量的平移、旋转、缩放不变性 和Krawtchouk矩良好 的局部重构特性,计算B分量图像的Krawtchouk低阶矩不变量 ,由此构造鲁棒水印;然后对G分量图 像进行两级复Contourlet分解,在其低频分量中,利用SVM建立图像尺度内的 局部相关性训练模型, 并根据预测结果自适应地实现数字水印图像的嵌入和提取。大量实验结果表明,本文算法不 仅具有较好的 不可感知性,而且对中值滤波、加性噪声和JPEG压缩之类的常规图像处理,以及缩放、旋转 和剪切等几 何攻击,均具有较好的鲁棒性能,其性能优于基于小波域的SVM和基于Contourlet域的SVM水 印算法。

关 键 词:数字水印   复Contourlet变换   支持向量机(SVM)   Krawtchouk矩   双水印
收稿时间:2014-07-01

Double watermarking algorithm based on support vector machine in complex Contourlet domain and Krawtchouk moment
WU Yi-quan and SHI Jun-peng. Double watermarking algorithm based on support vector machine in complex Contourlet domain and Krawtchouk moment[J]. Journal of Optoelectronics·laser, 2014, 0(11): 2170-2177
Authors:WU Yi-quan and SHI Jun-peng
Affiliation:College of Electronic and Information Engineering,Nanjing University of Aer onautics and Astronautics, Nanjing 210016,China ;Jiangsu Key Laboratory of Image and Video Understandi ng for Social Safety,Nanjing University of Science and Technology,Nanjing 210094,China;College of Electronic and Information Engineering,Nanjing University of Aer onautics and Astronautics, Nanjing 210016,China
Abstract:In order to further improve the robustness of watermarking algorithm b ased on support vector machine (SVM),a double watermarking algorithm based on SV M in complex Conto urlet domain and Krawtchouk moment is proposed in this paper.Firstly,the blue component and green componen t are extracted from the RGB host image.The algorithm makes full use of the invariance of Krawtchouk moment invariants to translation, rotation and scaling,and the better local reconstruction characteristics of Kra wtchouk moment.The lower order Krawtchouk moment invariants of the blue component are calculated for constructi on of robust watermarking. Then the green component image is decomposed by two-level complex Contourlet tr ansform.In the low-frequency components,the local correlation training model of image in the same scale is e stablished by using support vector machine.The watermarking image is adaptively embedded and extracted according t o the prediction results of the established model.A large number of experimental results show that the proposed algorithm is not only invisible but also robust against the common image processing,such as median filtering,Ga ussian noise and JPEG compression,and against some kinds of geometric attacks,including rotation,sca ling and clipping.It outperforms the image watermarking algorithm based on support vector machine in wavelet doma in or Contourlet domain.
Keywords:digital watermarking   complex Contourlet transform   support vector ma chine   Krawtchouk moment   double watermarking
点击此处可从《光电子.激光》浏览原始摘要信息
点击此处可从《光电子.激光》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号