首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical strength of 300 mm diameter silicon wafers at high temperatures: modeling and simulation
Affiliation:1. Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;2. Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
Abstract:Under gravitational and thermal constraints of IC process technology, 300 mm diameter silicon wafers can partly relax via slip dislocation generation and propagation, degrading the electrical characteristics of the leading edge device. We present a force balance model to describe the strain relaxation in large wafer diameter, which includes heat transfer effects and the criterion for yielding under a plane stress state. The material attributes, e.g. oxygen and its state of aggregation, are taken into account. While the plastic deformation of silicon wafers caused by thermal stresses at high temperatures can be controlled by process design, the control of plastic deformation due to gravitational forces may be accomplished by equipment design. This system approach allows calculation of wafer mechanics and ramp rate profiles for an arbitrary high-temperature process. The quantitative theory proposed here provides guidance for computer simulation to configure stable slip-free wafer process flow under mechanical and thermal loads. Applications include high speed simulations for use in ‘what if’ experiments or initial simulations of large scale experimental sequences. The simulator developed can also be used by IC manufacturers to determine optimum wafer throughput and cycle times in front-end device processes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号