首页 | 本学科首页   官方微博 | 高级检索  
     


Two-dimensional analysis of short-channel delta-doped GaAs MESFETs
Authors:Tian   H. Kim   K.W. Littlejohn   M.A. Bedair   S.M. Witkowski   L.C.
Affiliation:Dept. of Electr. & Comput. Eng., North Carolina State Univ., Rayleigh, NC;
Abstract:Key design parameters for delta-doped GaAs MESFETs, such as delta doping profile, top layer background doping density, and scaling of lateral feature size, are investigated using a two-dimensional numerical simulation. A three-region (delta-doped conducting channel, top layer, and substrate) velocity-field relation is implemented in the model as appropriate for the particular device structure which is simulated. Simulation results show excellent agreement with a fabricated 0.5-μm gate-length delta-doped GaAs MESFETs based on atomic layer epitaxy material. An extrinsic transconductance of 370 mS/mm and a drain-source current of 270 mA/mm are obtained for typical devices, and the maximum transconductance is as high as 400 mS/mm. These are the best DC results yet reported for 0.5-μm gate-length delta-doped GaAs MESFETs. Considerations of design and optimization are discussed in terms of threshold voltage sensitivity, transconductance, current drive capability, and cutoff frequency, based on both simulation and experiment results
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号