首页 | 本学科首页   官方微博 | 高级检索  
     


Frequency estimation of a single complex sinusoid using a generalized Kay estimator
Authors:Rosnes  E Vahlin  A
Affiliation:Dept. of Informatics, Univ. of Bergen, Norway;
Abstract:This letter introduces a generalized version of Kay's estimator for the frequency of a single complex sinusoid in complex additive white Gaussian noise. The Kay estimator is a maximum-likelihood (ML) estimator at high signal-to-noise ratio (SNR) based on differential phase measurements with a delay of one symbol interval. In this letter, the corresponding ML estimator with an arbitrary delay in the differential phase measurements is derived. The proposed estimator reduces the variance at low SNR, compared with Kay's original estimator. For certain delay values, explicit expressions for the window function and the corresponding high SNR variance of the proposed generalized Kay (GK) estimator are presented. Furthermore, for some delay values, the window function is nearly uniform and the implementation complexity is reduced, compared with the original Kay estimator. For a delay value of two, we show that the variance at asymptotically high SNR approaches the Cramer-Rao bound as the sequence length tends to infinity. We also explore the effect of exchanging the order of summation and phase extraction for reduced-complexity reasons. The resulting generalized weighted linear predictor estimator and the GK estimator are compared with both autocorrelation-based and periodogram-based estimators in terms of computational complexity, estimation range, and performance at both low and high SNRs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号