首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于因果强度的局部因果结构主动学习方法
引用本文:周冬梅,王浩,姚宏亮,李俊照,张赞. 一种基于因果强度的局部因果结构主动学习方法[J]. 计算机科学, 2012, 39(11): 237-242
作者姓名:周冬梅  王浩  姚宏亮  李俊照  张赞
作者单位:(合肥工业大学计算机与信息学院 合肥230009)
摘    要:因果结构学习是贝叶斯网络学习中一种重要的结构学习方法,因果关系揭示了系统要素作用的本质。由于仅利用观测数据很难准确地发现变量间的因果关系,且通常人们仅关心网络中关于某一变量的局部因果关系,因此针对难以从观测数据中仅获取所感兴趣的变量的局部因果结构的问题,提出了一种局部结构学习方法,即一种基于因果强度的局部因果结构主动学习方法(CSI-I_CS工力。CSI一工CSI方法融合了马尔可夫毯的结构划分能力和扰动学习的因果发现能力,并且引入了因果强度进行扰动结点的选择。利用HITON MI3算法寻找目标结点的马尔可夫毯,生成关于目标结点的局部模型;然后,利用不对称信息墒对局部模型中的每一结点进行因果强度分析,选取因果强度值较大的结点进行扰动,生成扰动数据;进而,联合扰动数据和观测数据利用准确方法(exact method)学习边的后验概率,从而获得一个关于目标结点的局部因果网络。利用结构信息嫡对CSI-LCSL方法的学习结果进行评估。在标准网络上的实验结果证实了CSI一LCSI、算法的有效性。

关 键 词:因果结构,特征选择,扰动学习,贝叶斯网络,因果强度

Local Causal Structural Active Learning Method Based on Causal Power
Abstract:Causal structure learning is an important causal knowledge discovery method to disclose the nature of causalinteractions in the I3ayesian Networks. The causal relations are difficult to be discovered by only using observation data.On the other hand, actually, we are often only interested in local causal structure about a target variable. This paperpresented a local causal structure learning method by integrating feature selection into intervention called a local causalstructural active learning based on causal power(CSI-LCSL). CSI-LCSL integrated the dividing structure ability ofMarkov blanket and causal discovery ability of intervention learning. Firstly, under the faithfulness assumption, CSI-LCSL utilized HITON-MI3 algorithm to obtain the Markov blanket of interested variable for generating a local model.I}hen, we selected a intervention variable from the local model by using non-sys entropy to generate interventional databy perfect experiments. Finally,we used an exact method algorithm to obtain a local causal structure of the interestedvariable by combining observational data and interventional data. A series of comparative experiments on two standard13aycsian networks show that our method has excellent learning accuracy.
Keywords:Causal structurc  Fcaturc sclcction  Intcrvcntion lcarning  l3aycsian nctworks  Causal power
点击此处可从《计算机科学》浏览原始摘要信息
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号