首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Cooling Rate on the Microstructure of Laser-Remelted INCONEL 718 Coating
Authors:Yaocheng Zhang  Zhuguo Li  Pulin Nie  Yixiong Wu
Affiliation:1. Department of Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
2. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
Abstract:The rapid cooling rate was achieved during laser remelting with high scanning speed. The microstructure and precipitations in the INCONEL 718 remelted layer were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), and solid phase microextraction (SPME). The phase transition temperatures were carried out by differential thermal analysis (DTA). The results showed that columnar-dendritic and equiaxial structures appeared in different regions of the remelted layer. The dendritic spacing of the columnar dendrite and equiaxed grain size decreased with increasing scanning speed. The precipitations in the remelted layer consisted of Laves, granular phase, and a small quantity of quadrangular nitride (Ti, Nb)N. The granular phase Nb(Al, Ti) was precipitated at about 1272 K (999 °C) with the spontaneous decomposition of the supersaturation Laves during the cooling stage, and the small-size granule became coarsened to 0.2 to 0.9 μm during the cooling stage. The noncoherent relationship existed between the granular phase and austenite, and the coarsening of granule was related to the cube root of the diffusion coefficient, interfacial energy, and diffusion time. The microhardness of the remelted layer was increased by increasing the cooling rate due to the Nb atomic solid solution strengthening caused by the distorted elastic stress field and the short-range internal stress.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号