首页 | 本学科首页   官方微博 | 高级检索  
     


A numerical method for prediction of curved rail wear
Authors:Xuesong Jin  Zefeng Wen  Xinbiao Xiao  Zhongrong Zhou
Affiliation:(1) State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031, China
Abstract:Important published papers on rail wear in the past were reviewed. A numerical method was put forward to predict curved rail wear during a railway vehicle curving. The numerical method was discussed in detail. It considered a combination of Kalker’s non-Hertzian rolling contact theory, rail material wear model, the coupling dynamics of the vehicle and track, and the three-dimensional contact geometry analysis of wheel-rail. In its numerical implementation, the dynamical parameters of all the parts of the vehicle and track, such as normal loads and creepages of the wheels and rails, were firstly obtained through the curving dynamics analysis. The wheel-rail contact geometry calculation gave the wheel-rail contact geometry parameters, which were used in the wheel-rail rolling contact calculation with Kalker’s non-Hertzian rolling contact theory modified. The friction work densities on the contact areas of the wheels and rails were obtained in the rolling contact calculation, and were used to predict the rail running surface wears caused by the multiple wheels of the vehicle simultaneously with the rail material wear model. In the rail material wear model, it was assumed that the mass loss of each unit area was proportional to the frictional work density in the contact area. A numerical example was present to verify the present method. The numerical results of the example are reasonable, and indicate that the high rail wear of the curved track caused by the leading wheelset is much more serious than those caused by the other three wheels of the same bogie.
Keywords:Rail wear  Frictional work  Numerical method  Railway vehicle  Curved track  Rolling contact mechanics  Structure dynamics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号