首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进果蝇优化BP神经网络的冲击地压预测
引用本文:刘晓悦, 李朋园. 基于改进果蝇优化BP神经网络的冲击地压预测[J]. 矿业安全与环保, 2018, 45(3): 55-60.
作者姓名:刘晓悦  李朋园
作者单位:1.华北理工大学 电气工程学院, 河北 唐山 063000
基金项目:国家自然科学基金项目(51474086, 51574102);河北省自然科学基金项目(E2016209357)
摘    要:
针对煤矿开采过程中存在非线性、强耦合性等特点导致的动力灾害难以预测的问题,引入一种候选解的线性生成机制(LGMS)、混沌搜索、粒子群算法(PSO)和模拟退火算法(SA)修正果蝇算法(IFOA),利用改进后的果蝇优化算法良好的搜索全局最优解的能力, 自适应地调整 BP 网络的权值和阈值,建立了煤岩冲击地压灾害预测模型。以唐山开滦煤矿样本数据为例进行仿真验证,结果表明其鲁棒性和测量精度明显提高,且网络具有较强的收敛性能和优化能力。

关 键 词:候选解的线性生成机制  混沌搜索  粒子群算法  模拟退火算法  BP神经网络  冲击地压  鲁棒性
收稿时间:2017-06-20
修稿时间:2017-07-20

Prediction of Rock Bust Based on Improved FOA-BP Neural Network
LIU Xiaoyue, LI Pengyuan. Prediction of Rock Bust Based on Improved FOA-BP Neural Network[J]. Mining Safety & Environmental Protection, 2018, 45(3): 55-60.
Authors:LIU Xiaoyue  LI Pengyuan
Affiliation:1.College of Electrical Engineering, North China University of Science and Technology, Tangshan 063000, China
Abstract:
In view of the problem that the dynamic disaster is unpredictable due to the non-linearity and strong coupling in the coal mining process, this paper introduced a Linear Generation Mechanism of candidate Solution(LGMS), Chaotic Search, Particle Swarm Optimization algorithm(PSO) and Simulated Annealing algorithm(SA) to modify Fruit fly algorithm(IFOA), and then by using the capability of searching the global optimal solution of modified FOA, the weight and threshold of BP neural network were adjusted adaptively, a prediction model of rock burst was established. Finally, taking the sample data of Kailuan Coal Mine in Tangshan as an example for simulation verification, the experimental results showed that the accuracy of robustness and measurement are obviously improved, and the network has strong convergence performance and optimization ability.
Keywords:Linear Generation Mechanism of candidate Solution  Chaotic Search  Particle Swarm Optimization algorithm  Simulated Annealing algorithm  BP neural network  rock burst  robustness
本文献已被 CNKI 等数据库收录!
点击此处可从《矿业安全与环保》浏览原始摘要信息
点击此处可从《矿业安全与环保》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号