首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM多元非线性回归的微波谐振腔谷物含水率测量法
引用本文:杨国辉,吴群,姜宇,Nikawa Yoshio. 基于SVM多元非线性回归的微波谐振腔谷物含水率测量法[J]. 仪器仪表学报, 2007, 28(3): 421-425
作者姓名:杨国辉  吴群  姜宇  Nikawa Yoshio
作者单位:1. 哈尔滨工业大学电子与信息技术研究院,哈尔滨,150001,中国
2. 哈尔滨工程大学信息与通信工程学院,哈尔滨,150001,中国
3. Kokushikan大学电子与电气工程系,东京,154-8515,日本
摘    要:使用微波谐振腔对物料含水率测量过程中,减少谐振参量与含水率多元非线性回归过程的误差是影响测量精度的主要因素。针对这一问题,建立了一种基于支持向量机多元非线性回归模型,并确定了其中谐振频率、品质因数和环境温度的特征值、贡献率。应用SVM—KM对该模型进行实验研究,利用50组数据对模型进行训练并验证其学习性能,利用另外15组数据验证其泛化能力。实验表明,该方法能够实现微波谐振腔物料含水率的软测量,且小样本条件下比神经元网络具有优势。对SVM多元非线性回归泛化性能进行测试,其均方根相对误差为1.06%,平均绝对相对误差为0.96%,最大绝对相对误差为1.16%。

关 键 词:含水率测量  支持向量机  谷物  开路微波谐振腔
修稿时间:2007-01-01

Grain moisture content measurement based on SVM multiple non-linear regression using microwave resonancet
Yang Guohui,Wu Qun,Jiang Yu,Nikawa Yoshio. Grain moisture content measurement based on SVM multiple non-linear regression using microwave resonancet[J]. Chinese Journal of Scientific Instrument, 2007, 28(3): 421-425
Authors:Yang Guohui  Wu Qun  Jiang Yu  Nikawa Yoshio
Abstract:This paper provides a method of regression for multiple non-linear relations between resonance parameters and moisture content in order to reduce the measurement errors. A multiple non-linear regression model based on support vector machine (SVM) has been developed. The eigenvalue and contribution degree of resonance frequency, quality factor and environment temperature are calculated. Experiments have been conducted using SVM-KM toolbox with 50 group data for training model and 15 group data for verifying the model performance. The results show that this algorithm not only has the ability to realize the moisture soft-sensor using microwave coaxial but also has the advantage over Neural Network Algorithm under small sample conditions. The root mean square relative error, mean absolute relative error and maximize absolute relative error of SVM model generalization performance are 1.06%, 0.96% and 1.16%, respectively.
Keywords:moisture content measurement  support vector machine  grain  open microwave resonant cavity
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号