首页 | 本学科首页   官方微博 | 高级检索  
     


Titanium Disilicide as High-Temperature Contact Material for Thermoelectric Generators
Authors:F Assion  M Schönhoff  U Hilleringmann
Affiliation:1. Institute for Electrical Engineering and Information Technology, University of Paderborn, 33098, Paderborn, Germany
Abstract:Thermoelectric devices can be used to capture electric power from waste heat in a variety of applications. The theoretical efficiency rises with the temperature difference across the thermoelectric generator (TEG). Therefore, we have investigated contact materials to maximize the thermal stability of a TEG. A promising candidate is titanium disilicide (TiSi2), which has been well known as a contact material in silicon technology for some time, having low resistivity and thermal stability up to 1150 K. A demonstrator using highly doped silicon as the thermoelectric material has been integrated. A p- and an n-type wafer were oxidized and bonded. After cutting the wafer into pieces, a 200-nm-thick titanium layer was sputtered onto the edges. After a 750°C rapid thermal annealing step, the TEG legs were connected by a highly conductive TiSi2 layer. A TEG with 12 thermal couples was integrated, and its joint resistance was found to be 4.2 Ω. Hence, we have successfully demonstrated a functional high-temperature contact for TEGs up to at least 900 K. Nevertheless, the actual thermal stability will be even higher. The process could be transfered to other substrates by using amorphous silicon deposited by plasma-enhanced chemical vapor deposition.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号