首页 | 本学科首页   官方微博 | 高级检索  
     

基于自组织特征神经网络和最小二乘支持向量机的短期电力负荷预测方法
引用本文:魏明奎,叶葳,沈靖,周泓,蔡绍荣,王渝红,沈力. 基于自组织特征神经网络和最小二乘支持向量机的短期电力负荷预测方法[J]. 现代电力, 2021, 38(1): 17-23. DOI: 10.19725/j.cnki.1007-2322.2020.0201
作者姓名:魏明奎  叶葳  沈靖  周泓  蔡绍荣  王渝红  沈力
作者单位:1.国家电网有限公司西南分部,四川省成都市 6100315
基金项目:国家电网有限公司科技项目资助(SGSW0000GHJS1900117)。
摘    要:准确的负荷预测对于整个电力系统经济有效运行有着重要的意义.针对负荷预测集和预测模型作出协同优化改进,提出了基于粒子群(Particle Swarm Optimization,PSO)优化的自组织特征映射网络(Self-organizing Feature Mapping,SOFM)和遗传算法(Genetic Algor...

关 键 词:负荷预测  自组织特征映射神经网络  最小二乘支持向量机  粒子群算法  遗传算法
收稿时间:2020-05-13

Short-Term Load Forecasting Method Based on Self-Organizing Feature Mapping Neural Network and GA-Least Square SVC Model
WEI Mingkui,YE Wei,SHEN Jing,ZHOU Hong,CAI Shaorong,WANG Yuhong,SHEN Li. Short-Term Load Forecasting Method Based on Self-Organizing Feature Mapping Neural Network and GA-Least Square SVC Model[J]. Modern Electric Power, 2021, 38(1): 17-23. DOI: 10.19725/j.cnki.1007-2322.2020.0201
Authors:WEI Mingkui  YE Wei  SHEN Jing  ZHOU Hong  CAI Shaorong  WANG Yuhong  SHEN Li
Affiliation:1.Southwest Branch of State Grid Corporation of China, Chengdu 610031, Sichuan Province, China2.College of Electrical Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China
Abstract:Accurate load forecasting is very important for economic and effective operation of whole power grid.To make collaborative optimization improvement for load orecasting set and the forecasting model,based on particle swarm optimization-self-organizing feature mapping(PSO-SOFM)and genetic algorithm-based least square support vector machine(GALSSVM)a short-term power load forecasting method was proposed.The adaptive weighted PSO was used to optimize the weight of SOFM neural network,and the optimized PSOSOFM neural network was used to classify the sort processing the original load date to obtain multi groups of training sets.For each group of training set a least square support vector machine forecasting model was established and its key parameters were optimized by GA,finally a GA-LSSVM forecasting model was obtained.Finally,performing load forecasting by existed load data,the effectiveness and accuracy of the proposed method are verified.
Keywords:power load forecasting  self-organizing feature mapping(SOFM)neural network  least square support vector machine(LSSVM)  particle swarm optimization(PSO)  genetic algorithm(GA)
本文献已被 维普 等数据库收录!
点击此处可从《现代电力》浏览原始摘要信息
点击此处可从《现代电力》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号