首页 | 本学科首页   官方微博 | 高级检索  
     

一类线性切换系统具有H性能指标的二次稳定
引用本文:聂宏,赵军. 一类线性切换系统具有H性能指标的二次稳定[J]. 控制理论与应用, 2004, 21(2): 189-194
作者姓名:聂宏  赵军
作者单位:1. 辽宁石油化工大学,理学院,辽宁,抚顺,113001;东北大学,信息科学与工程学院,辽宁,沈阳,110004
2. 辽宁石油化工大学,理学院,辽宁,抚顺,113001
基金项目:国家自然科学基金项目(60274009); 高等学校博士专项科研基金项目(20020145007); 辽宁省自然科学基金项目(20032020).
摘    要:研究了一类线性切换系统具有H扰动衰减度二次稳定问题.这类线性切换系统由两个子系统组成,并且每个子系统都不是具有H扰动衰减度二次稳定的.利用单Lyapunov函数方法,得到了线性切换系统具有H扰动衰减度二次稳定的充分条件,同时由凸组合系统设计出确保线性切换系统二次稳定且具有H扰动衰减度的切换律.进一步,还给出了线性切换系统具有H扰动衰减度二次稳定的必要条件.最后的仿真实例表明了结论的有效性.

关 键 词:线性切换系统   具有H扰动衰减度的二次稳定   凸组合   单Lyapunov函数
文章编号:1000-8152(2004)02-0189-06
收稿时间:2002-04-29
修稿时间:2003-07-14

Quadratic stability with H-infinity performance for a class of switched linear systems
NIE Hong,ZHAO Jun. Quadratic stability with H-infinity performance for a class of switched linear systems[J]. Control Theory & Applications, 2004, 21(2): 189-194
Authors:NIE Hong  ZHAO Jun
Affiliation:Faculty of Science, Liaoning University of Petroleum & Chemical Technology, Liaoning Fushun 113001, China; School of Information Science and Engineering, Northeastern University. Liaoning Shenyang 110004, China
Abstract:The problem of quadratic stability with H-infinity disturbance attenuation for a class of switched linear systems is addressed in this paper. The systems under consideration consist of two subsystems, and neither of which needs to be quadrati-cally stable with H-infinity disturbance attenuation. Based on single Lyapunov function techniques, a sufficient condition for the switched linear system in this class to be quadratically stable with H-infinity disturbance attenuation is derived, and the quadrati-cally stable switching law is designed in terms of the convex combination system. Furthermore, a necessary condition for the problem to be solvable is also derived. Finally, a simulation example is employed to illustrate the validity of the results.
Keywords:switched linear system   quadratic stability with H-infinity disturbance attenuation   convex combination   single Lyapunov function
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号