首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of density and strain rate on properties of syntactic foams
Authors:E.?Woldesenbet  author-information"  >  author-information__contact u-icon-before"  >  mailto:woldesen@me.lsu.edu"   title="  woldesen@me.lsu.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Nikhil?Gupta,A.?Jadhav
Affiliation:(1) Mechanical Engineering Department, Southern University, Baton Rouge, LA 70813, USA;(2) Mechanical, Aerospace and Manufacturing Engineering Department, Polytechnic University, Brooklyn, NY 11201, USA;(3) Mechanical Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA
Abstract:Syntactic foams are characterized for high strain rate compressive properties using Split-Hopkinson Pressure Bar (SHPB) technique in this study. The results at high strain rates are compared to quasi-static strain rate compressive properties of the same material. Four different types of syntactic foams are fabricated with the same matrix resin system but different size microballoons for testing purpose. The microballoons have the same outer radius. However, their internal radius is different leading to a difference in their density and strength. The volume fraction of the microballoons in syntactic foams is maintained at 0.65. Such an approach is helpful in isolating and identifying the contribution of matrix and microballoons to the dynamic compressive properties of syntactic foams. Results demonstrate considerable increase in peak strength of syntactic foams for higher strain rates and increasing density. It is also observed that the elastic modulus increases with increasing strain rate and density. Scanning electron microscopy is carried out to understand the fracture modes of these materials and the density effect on high strain rate properties of syntactic foam.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号