首页 | 本学科首页   官方微博 | 高级检索  
     


Proving Approximate Implementations for Probabilistic I/O Automata
Authors:Sayan Mitra  Nancy Lynch  
Affiliation:aComputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, USA
Abstract:In this paper we introduce the notion of approximate implementations for Probabilistic I/O Automata (PIOA) and develop methods for proving such relationships. We employ a task structure on the locally controlled actions and a task scheduler to resolve nondeterminism. The interaction between a scheduler and an automaton gives rise to a trace distribution—a probability distribution over the set of traces. We define a PIOA to be a (discounted) approximate implementation of another PIOA if the set of trace distributions produced by the first is close to that of the latter, where closeness is measured by the (resp. discounted) uniform metric over trace distributions. We propose simulation functions for proving approximate implementations corresponding to each of the above types of approximate implementation relations. Since our notion of similarity of traces is based on a metric on trace distributions, we do not require the state spaces nor the space of external actions of the automata to be metric spaces. We discuss applications of approximate implementations to verification of probabilistic safety and termination.
Keywords:Approximate implementation   equivalence   Approximate simulation   Abstraction   Probabilistic I/O Automata
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号