首页 | 本学科首页   官方微博 | 高级检索  
     


Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film
Authors:Chang Kyu Jeong  Sung Beom Cho  Jae Hyun Han  Dae Yong Park  Suyoung Yang  Kwi-Il Park  Jungho Ryu  Hoon Sohn  Yong-Chae Chung  Keon Jae Lee
Affiliation:1. Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea;2. Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology(KAIST), 291 Daehak-ro,Yuseong-gu, Daejeon 34141, Republic of Korea;3. Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;4. Department of Energy Engineering, Gyeongnam National University of Science and Technology, 33 Dongjin-ro, Jinju, Gyeongnam 52725, Republic of Korea;5. Functional Ceramic Group, Korea Institute of Materials Science(KIMS), 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam 51508, Republic of Korea
Abstract:Controlling the properties of piezoelectric thin films is a key aspect for designing highly effident flexible electromechanical devices.In this stud~ the crystallographic phenomena of PbZr1-xTixO3 (PZT) thin films caused by distinguished interfacial effects are deeply investigated by overlooking views,including not only an experimental demonstration but also ab initio modeling.The polymorphic phase balance and crystallinity,as well as the crystal orientation of PZT thin films at the morphotropic phase boundary (MPB),can be stably modulated using interfacial crystal structures.Here,interactions with MgO stabilize the PZT crystallographic system well and induce the texturing influences,while the PZT film remains quasi-stable on a conventional Al2O3 wafer.On the basis of this fundamental understanding,a high-output flexible energy harvester is developed using the controlled-PZT system,which shows significantly higher performance than the unmodified PZT generator.The voltage,current,and power densities are improved by 556%,503%,and 822%,respectively,in comparison with the previous flexional single-crystalline piezoelectric device.Finally,the improved flexible generator is applied to harvest tiny vibrational energy from a real traffic system,and it is used to operate a commercial electronic unit.These results clearly indicate that atomic-scale designs can produce significant impacts on macroscopic applications.
Keywords:energy harvesting  morphotropic phase boundary (MPB)  piezoelectric  first-principles calculation  lead zirconium titanate (PZT)
本文献已被 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号