首页 | 本学科首页   官方微博 | 高级检索  
     


Oxide Sandwiched Metal Thin‐Film Electrodes for Long‐Term Stable Organic Solar Cells
Authors:Sylvio Schubert  Martin Hermenau  Jan Meiss  Lars Müller‐Meskamp  Karl Leo
Affiliation:Institut für Angewandte Photophysik, Technische Universit?t Dresden, George‐B?hr Stra?e 1, 01062 Dresden, Germany
Abstract:Oxide/silver/oxide multilayers as semitransparent top electrode for small molecule organic solar cells (OSCs) are presented. It is shown that two oxide layers sandwiching a central metal layer greatly improve the stability and lifetime of the organic solar cell. Thermally evaporated MoO3, WO3, or V2O5 layers are employed as an interlayer for subsequent silver deposition and significantly change the morphology of the ultrathin silver layer, improving charge extraction and electrodes series resistance. The transmittance of the electrode is increased by introducing oxide or oxide and organic multilayers as capping layer, which leads to higher photocurrent generation in the absorber layer. Application of 1 nm MoO3/11 nm Ag/10 nm MoO3/50 nm Alq3 multilayer electrodes in OSCs lead to an efficiency of 2.6% for a standard ZnPc:C60 cell, showing superior performance compared to devices with pure silver top contacts. The device lifetime is also strongly increased. MoO3 layers can saturate and stabilize the inner and outer metal surface, passivating it against most of the degradation mechanisms. With such an oxide/silver/oxide multilayer electrode, the time until the glass encapsulated OSC is degraded to 80% of its starting efficiency is enhanced from 86 h to approximately 4500 h compared to an OSC without an oxide interlayer.
Keywords:thin metal electrodes  organic solar cells  lifetimes  oxides  dielectric materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号