首页 | 本学科首页   官方微博 | 高级检索  
     


Development of electroless silver plating on Para‐aramid fibers and growth morphology of silver deposits
Authors:Huiru Zhang  Xinguo Zou  Jingjing Liang  Xiao Ma  Zhiyong Tang  Jinliang Sun
Affiliation:Research Center for Composite Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, People's Republic of China
Abstract:The development of a conductive fiber with flame resistance is an urgent concern particularly in national defense and other specialized fields. Aramid fibers (para‐ or meta‐) exihibit high strength and excellent fire resistance. Electroless silver plating on para‐aramid fibers and growth morphology of silver deposits was investigated in the present work. The surface of para‐aramid fibers was roughened using sodium hydride/dimethyl sulfoxide to guarantee successful electroless plating. Two complexing agents (ethylene diamine/ammonia) and two reducing agents (glucose/seignette salt) were used for the electroless silver plating bath design. Structure and properties of the resulting silver‐deposited para‐aramid fibers were evaluated based on scanning electron microscopy, silver weight gain percentage calculation, electrical resistance measurement, crystal structure analysis, and mechanical properties test. The results showed that a higher silver weight gain was advantageous to the improvement of conductivity for the silver‐deposited para‐aramid fibers. The obtained silver deposit was homogenous and compact. Electroless silver‐plating deposits were considered to be three‐dimensional nucleation and growth model (Volmer–Weber). Black, silver gray, and white deposits appeared sequentially with progressive plating. The breaking strength of silver‐deposited para‐aramid fibers remained at value up to 44 N. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Keywords:para‐aramid  electroless silver plating  silver weight gain percentage  surface morphology  growth morphology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号