首页 | 本学科首页   官方微博 | 高级检索  
     


Embedded benzocyclobutene in silicon: An integrated fabrication process for electrical and thermal isolation in MEMS
Authors:Alireza Modafe
Affiliation:MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, The Institute for Systems Research, University of Maryland, 2410 A.V. Williams Building, College Park, MD 20742, United States
Abstract:This paper reports a novel fabrication process to develop planarized isolated islands of benzocyclobutene (BCB) polymer embedded in a silicon substrate. Embedded BCB in silicon (EBiS) can be used as an alternative to silicon dioxide in fabrication of electrostatic micromotors, microgenerators, and other microelectromechanical devices. EBiS takes advantage of the low dielectric constant and thermal conductivity of BCB polymers to develop electrical and thermal isolation integrated in silicon. The process involves conventional microfabrication techniques such as photolithography, deep reactive ion etching, and chemical mechanical planarization (CMP). We have characterized CMP of BCB polymers in detail since CMP is a key step in EBiS process. Atomic force microscopy (AFM) and elipsometry of blanket BCB films before and after CMP show that higher polishing down force pressure and speed lead to higher removal rate at the expense of higher surface roughness, non-uniformity, and scratch density. This is expected since BCB is a softer material compared to inorganic films such as silicon dioxide. We have observed that as the cure temperature of BCB increases beyond 200 °C, the CMP removal rate decreases drastically. The results from optical microscopy, scanning electron microscopy, and optical profilometry show excellent planarized surfaces on the EBiS islands. An average step height reduction of more than 95% was achieved after two BCB deposition and three CMP steps.
Keywords:Benzocyclobutene  BCB  MEMS  Electrical isolation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号