首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling the temperature rise effect through high-pressure torsion
Authors:H. Parvin
Affiliation:Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran
Abstract:An approach composed of the thermodynamics-based dislocation model and the Taylor theory is used to investigate the evolution of microstructure and flow stress during high-pressure torsion (HPT). The incremental temperature rise is considered through the modelling of HPT. The temperature can affect the annihilation of dislocations and thus the dislocation density. The model predicts the dislocation density, sub-grain size and flow stress during HPT. The modelling results are compared with the experimental data and the modelling results without considering the incremental temperature rise. A remarkable agreement is observed between the modelling results with considering the temperature rise effect and the experimental data.
Keywords:Modelling  Temperature rise  High-pressure torsion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号