首页 | 本学科首页   官方微博 | 高级检索  
     

纳米结构LSCF-SDC复合阴极的制备及其氧还原机理研究
引用本文:徐红梅,张 华,李 恒,简耀永,谢 武,王一平,徐铭泽. 纳米结构LSCF-SDC复合阴极的制备及其氧还原机理研究[J]. 无机材料学报, 2017, 32(4): 379-385. DOI: 10.15541/jim20160330
作者姓名:徐红梅  张 华  李 恒  简耀永  谢 武  王一平  徐铭泽
作者单位:(湖南科技大学 1. 材料科学与工程学院; 2. 高温耐磨材料湖南省重点实验室; 3. 机电工程学院, 湘潭411201)
基金项目:国家自然科学基金(51402104)
摘    要:利用浸渍法制备了La0.6Sr0.4Co0.8Fe0.2O3-δ(LSCF)/Ce0.8Sm0.2O1.9(SDC)纳米复合阴极, 利用XRD、SEM对阴极的相组成及微观结构进行了分析。LSCF前驱体在800℃煅烧4 h后获得平均颗粒尺寸为50 nm的纯LSCF相。测试了在不同LSCF浸渍量及氧分压条件下阴极的阻抗谱, 研究了O2在LSCF/SDC复合阴极的还原机制及LSCF的浸渍量对复合阴极性能的影响。研究结果表明, 在浸渍法制备的LSCF/SDC纳米复合阴极中, O2在阴极的还原反应涉及到O2在阴极表面的吸附与解离、O2-在阴极体内的传输及O2-在电极与电解质的界面之间的传输三个子过程, 其中O2-在阴极体内的传输为O2的还原反应的速率控制步骤。改变LSCF在阴极的浸渍量并没有改变O2-在复合阴极的反应机制, 阴极极化电阻随LSCF浸渍量的增加先减小再增大, 浸渍相的体积分数为16.5%时, 阴极极化电阻最小。

关 键 词:固体氧化物燃料电池  浸渍  阴极  纳米结构  氧还原  
收稿时间:2016-05-19
修稿时间:2016-08-03

Preparation and Oxygen-reduction Mechanism Investigation of Nanostructure LSCF-SDC Composite Cathodes
XU Hong-Mei,ZHANG Hua,LI Heng,JIAN Yao-Yong,XIE Wu,WANG Yi-Ping,XU Ming-Ze. Preparation and Oxygen-reduction Mechanism Investigation of Nanostructure LSCF-SDC Composite Cathodes[J]. Journal of Inorganic Materials, 2017, 32(4): 379-385. DOI: 10.15541/jim20160330
Authors:XU Hong-Mei  ZHANG Hua  LI Heng  JIAN Yao-Yong  XIE Wu  WANG Yi-Ping  XU Ming-Ze
Affiliation:(1. College of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; 2. Key Laboratory of High Temperature Wear Resistant Materials Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China; 3. College of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)
Abstract:The solid oxide fuel cell nanometer composite cathodes were prepared by infiltration of La0.6Sr0.4Co0.8Fe0.2O3-δ(LSCF) precursor solution into porous Ce0.8Sm0.2O1.9(SDC) scaffolds followed by being calcined at 800℃for 4 h. The composition and the microstructure of the cathodes were analysed by X-ray diffraction (XRD) and scanning electron microscope (SEM). Average particle size of the LSCF phase is about 50 nm after being calcined at 800℃ for 4 h. The reduction reaction mechanism of O2 in the LSCF/SDC cathodes and the influence of LSCF loadings on the cathode properties were studied in terms of frequency response, electrode resistance and reaction order at different oxygen partial pressures p(O2). Three elementary steps are considered to be involved in the cathodes reaction: (1) absorption and dissociation of molecular O2; (2) oxygen ion conduction in the bulk cathode; (3) oxygen ion transfer at the cathode-electrolyte interface. The oxygen ion conduction in the bulk cathode is found to be the rate-determining steps in the nano-sized LSCF-SDC composite cathode. The reduction reaction mechanism of O2 in the cathodes is similar to the samples with different LSCF loadings. The polar resistance of the cathode firstly decreases and then increases with increasing the LSCF loadings. The cathode polar resistance reaches the lowest when the volume fraction of LSCF loadings is 16.5vol%.
Keywords:solid oxide fuel cell  infiltration  cathode  nano-structure  oxygen reduction  
本文献已被 CNKI 等数据库收录!
点击此处可从《无机材料学报》浏览原始摘要信息
点击此处可从《无机材料学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号