首页 | 本学科首页   官方微博 | 高级检索  
     


Colloidally stable polypeptide-based nanogel: Study of enzyme-mediated nanogelation in inverse miniemulsion
Authors:Jana Dvořáková  Petr Šálek  Lucie Korecká  Ewa Pavlova  Peter Černoch  Olga Janoušková  Barbora Koutníková  Vladimír Proks
Affiliation:1. Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovského nám. 2, Prague , 6 162 06 Czech Republic;2. Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10 Czech Republic
Abstract:The current work presents a pivotal study of the nanogelation of the linear poly(N5-2-hydroxypropyl-L-glutamine) polymer precursor containing tyramine (TYR) units in an inverse miniemulsion by horseradish peroxidase/H2O2-mediated crosslinking. The effects of various nH2O2/nTYR ratios on the kinetics of nanogelation in the inverse miniemulsion and on the reaction time are investigated by linear sweep voltammetry, while the formation of dityramine crosslinking is explored by fluorescence spectroscopy. The study is completed using dynamic light scattering measurements, nanoparticle tracking analysis, and cryogenic transmission electron microscopy to acquire comprehensive information about the formed nanoparticulate systems. With the optimal ratio nH2O2/nTYR = 2, the strategy yields in the high-quality ~ 130 nm poly(amino acid)-based nanogel, which is prepared in 2 h. The nanogel is colloidally stable under different temperature and pH conditions for over 168 h. Moreover, the demonstrated nanogel is noncytotoxic for HeLa cells and human primary fibroblasts and is quickly enzymatically hydrolyzed into small fragments during a biodegradation study in human blood plasma. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48725.
Keywords:biodegradable  biomedical applications  colloids  crosslinking  synthesis and processing techniques
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号