首页 | 本学科首页   官方微博 | 高级检索  
     


Light Engineering in Nanometer Space
Authors:Yushin Kim  Byoung Jun Park  Moohyuk Kim  Young-Ho Jin  Nu-Ri Park  Myung-Ki Kim
Affiliation:1. KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea

Department of Radiology, Stanford University, Stanford, CA, 94305 USA;2. KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea

Abstract:Significant advances have been made in photonic integrated circuit technology, similar to the development of electronic integrated circuits. However, the miniaturization of cavity resonators, which are the essential components of photonic circuits, still requires considerable improvement. Over the past decades, various optical cavities have been utilized to implement next-generation light sources in photonic circuits with low energy, high data traffic, and integrable physical sizes. Nevertheless, it has been difficult to reduce the size of most commercialized cavities beyond the diffraction limit while maintaining high performance. Herein, recent advancements in subwavelength metallic cavities that can improve performance, even with the use of lossy plasmonic modes, are reviewed. The discussion is divided in three parts according to light engineering methods: subwavelength metal-clad cavities engineered using intermediate dielectric cladding; implementation of plasmonic cavities and waveguides using plasmonic crystals; and development of deep-subwavelength plasmonic waveguides and cavities using geometric engineering. A direction for further developments in photonic integrated circuit technology is also discussed, along with its practical application.
Keywords:metal cavities  nanocavities  nanofocusing  nanolasers  plasmonic crystals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号