首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis,characterization, and cytotoxicity of PCL–PEG–PCL diacrylate and agarose interpenetrating network hydrogels for cartilage tissue engineering
Authors:Zih-Cheng Su  Shih-Jie Lin  Yu-Hsuan Chang  Wen-Ling Yeh  I-Ming Chu
Affiliation:1. Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan;2. Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan

Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan

Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan;3. Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan

Abstract:Hydrogels are suitable biomaterials for cartilage tissue engineering due to the excellent ability to retain water to provide suitable environment for the tissue, however, the insufficient mechanical properties often prevent their wider applications. The objective of this study was to fabricate biocompatible hydrogels with good mechanical performance, high-water content, and porous microstructure for cartilage regeneration. Photocrosslinked hydrogels are one of the most widely used systems in tissue engineering due to the superior mechanical properties. In this study, block copolymer, poly(ε -caprolactone)-poly(ethylene)-poly(ε -caprolactone) diacrylate (PCL–PEG–PCL; PEC), was prepared by ring-opening polymerization, and PEC hydrogels were made through free radical crosslinking mechanism. Agarose network is chosen as another component of the hydrogels, because of the high-swelling behavior and cartilage-like microstructure, which is helpful for chondrocytes growth. Interpenetrating networks (IPN) were fabricated by diffusing PEC into agarose network followed by photo-crosslinking process. It was noted that incorporating PEC into the agarose network increased the elastic modulus and the compressive failure properties of individual component networks. In addition, high-swelling ratio and uniform porosity microstructures were found in the IPN hydrogels. IPN and PEC showed low cytotoxicity and good biocompatibility in elution test method. The results suggest promising characteristics of IPN hydrogels as a potential biomaterial for cartilage tissue engineering.
Keywords:biomedical applications  crosslinking  synthesis and processing techniques
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号