首页 | 本学科首页   官方微博 | 高级检索  
     


Filament-Free Bulk Resistive Memory Enables Deterministic Analogue Switching
Authors:Yiyang Li  Elliot J. Fuller  Joshua D. Sugar  Sangmin Yoo  David S. Ashby  Christopher H. Bennett  Robert D. Horton  Michael S. Bartsch  Matthew J. Marinella  Wei D. Lu  A. Alec Talin
Affiliation:1. Sandia National Laboratories, Livermore, CA, 94550 USA;2. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109 USA;3. Sandia National Laboratories, Albuquerque, NM, 87185 USA
Abstract:Digital computing is nearing its physical limits as computing needs and energy consumption rapidly increase. Analogue-memory-based neuromorphic computing can be orders of magnitude more energy efficient at data-intensive tasks like deep neural networks, but has been limited by the inaccurate and unpredictable switching of analogue resistive memory. Filamentary resistive random access memory (RRAM) suffers from stochastic switching due to the random kinetic motion of discrete defects in the nanometer-sized filament. In this work, this stochasticity is overcome by incorporating a solid electrolyte interlayer, in this case, yttria-stabilized zirconia (YSZ), toward eliminating filaments. Filament-free, bulk-RRAM cells instead store analogue states using the bulk point defect concentration, yielding predictable switching because the statistical ensemble behavior of oxygen vacancy defects is deterministic even when individual defects are stochastic. Both experiments and modeling show bulk-RRAM devices using TiO2-X switching layers and YSZ electrolytes yield deterministic and linear analogue switching for efficient inference and training. Bulk-RRAM solves many outstanding issues with memristor unpredictability that have inhibited commercialization, and can, therefore, enable unprecedented new applications for energy-efficient neuromorphic computing. Beyond RRAM, this work shows how harnessing bulk point defects in ionic materials can be used to engineer deterministic nanoelectronic materials and devices.
Keywords:analogue switching  neuromorphic computing  point defects  resistive switching  RRAM
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号