首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of Chronic Inflammation for Inhaled Particles: the Impact of Material Cycling and Quarantining in the Lung Epithelium
Authors:Hana Kokot  Boštjan Kokot  Aleksandar Sebastijanović  Carola Voss  Rok Podlipec  Patrycja Zawilska  Trine Berthing  Carolina Ballester-López  Pernille Høgh Danielsen  Claudia Contini  Mikhail Ivanov  Ana Krišelj  Petra Čotar  Qiaoxia Zhou  Jessica Ponti  Vadim Zhernovkov  Matthew Schneemilch  Zahra Doumandji  Mojca Pušnik  Polona Umek  Stane Pajk  Olivier Joubert  Otmar Schmid  Iztok Urbančič  Martin Irmler  Johannes Beckers  Vladimir Lobaskin  Sabina Halappanavar  Nick Quirke  Alexander P Lyubartsev  Ulla Vogel  Tilen Koklič  Tobias Stoeger  Janez Štrancar
Affiliation:1. Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000 Slovenia

Jožef Stefan International Postgraduate School, Ljubljana, 1000 Slovenia;2. Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000 Slovenia

Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, 2000 Slovenia;3. Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Neuherberg, Germany;4. Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000 Slovenia

Ion Beam Center, Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden, Germany;5. Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000 Slovenia;6. National Research Centre for the Working Environment, Copenhagen Ø, 2100 Denmark;7. Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ UK;8. Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691 Sweden;9. Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000 Slovenia

Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, 1000 Slovenia;10. Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764 Neuherberg, Germany

Department of Forensic Pathology, Sichuan University, Chengdu, 610065 China;11. European Commission, Joint Research Centre (JRC), Ispra, 21027 Italy;12. Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4 Ireland;13. Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, Nancy, F-54000 France;14. Faculty of Pharmacy, University of Ljubljana, Ljubljana, 1000 Slovenia;15. Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000 Slovenia

Faculty of Pharmacy, University of Ljubljana, Ljubljana, 1000 Slovenia;16. Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany;17. Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany

German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany

Chair of Experimental Genetics, Center of Life and Food Sciences, Weihenstephan, Technische Universität München, 85354 Freising, Germany;18. School of Physics, University College Dublin, Belfield, Dublin, 4 Ireland;19. Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1Y 0M1 Canada

Abstract:On a daily basis, people are exposed to a multitude of health-hazardous airborne particulate matter with notable deposition in the fragile alveolar region of the lungs. Hence, there is a great need for identification and prediction of material-associated diseases, currently hindered due to the lack of in-depth understanding of causal relationships, in particular between acute exposures and chronic symptoms. By applying advanced microscopies and omics to in vitro and in vivo systems, together with in silico molecular modeling, it is determined herein that the long-lasting response to a single exposure can originate from the interplay between the newly discovered nanomaterial quarantining and nanomaterial cycling between different lung cell types. This new insight finally allows prediction of the spectrum of lung inflammation associated with materials of interest using only in vitro measurements and in silico modeling, potentially relating outcomes to material properties for a large number of materials, and thus boosting safe-by-design-based material development. Because of its profound implications for animal-free predictive toxicology, this work paves the way to a more efficient and hazard-free introduction of numerous new advanced materials into our lives.
Keywords:advanced microscopies  adverse outcome pathways  disease prediction  material safety and health hazards  mode of action
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号