首页 | 本学科首页   官方微博 | 高级检索  
     


Oxygen barrier,free volume,and blending properties of fully bio-based polyamide 11/poly(vinyl alcohol) blends
Authors:Ya-qiong Huang  Dan-dan Dai  Hong-bo Li  Lei Sun  James Runt  Kuo-shien Huang  Jen-taut Yeh
Affiliation:1. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymeric Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan, 430000 China;2. Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania, 16803;3. Department of Materials Engineering, Kun Shan University, Tainan, 71070 Taiwan
Abstract:Fully bio-based polyamide 11 (PA11) was melt-blended with poly(vinyl alcohol) (PVA) with varying degrees of polymerization (DP) to prepare PA11xPVAzy. The PA11xPVAzy films demonstrated the lowest oxygen transmission rates (OTR) and free volume characteristics, when PVA contents of each PA11xPVAzy series reached a corresponding critical concentration. The minimum OTR and free volume characteristics obtained for the optimal PA11xPVAzy films reduced significantly with decreasing PVA DPs. The OTR of the optimal PA11xPVAzy blown film was 1.07 cm3 m−2 day−1 atm−1, which is near to that of the ethylene-vinyl alcohol copolymer high-barrier polymer. The results of dynamical, mechanical, and other experimental characterizations demonstrated that PA11 and PVA are compatible to some extent when PVA concentrations are less-than or equal to the respective critical values. The enhanced oxygen permeation resistance and free volume characteristics for optimal PA11xPVAzy films are at least partly ascribed to the improved hydrogen-bonded molecular interactions between PA11 CO groups and PVA O─H groups. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48562.
Keywords:free volume  miscible  nylon 11  oxygen barrier  poly(vinyl alcohol)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号