首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传神经网的自适应电池荷电态预估模型
引用本文:路志英,庞勇,刘正光. 基于遗传神经网的自适应电池荷电态预估模型[J]. 电源技术, 2004, 28(8): 504-507
作者姓名:路志英  庞勇  刘正光
作者单位:天津大学,电气与自动化工程学院,天津,300072
摘    要:电池荷电态(SOC)是放电电流、端电压、温度等多种因素的复杂的非线性函数,而且不同类型的电池具有很大的差异,不能建立统一的模型。因此要对其做出精确的预估是一件很困难的事情,需要耗费很多的人力和时间对特定类型的电池进行大量试验然后建模。为克服这些缺点,提出一种基于遗传神经网的自适应SOC预估模型,通过遗传算法对神经网络结构及其学习算法进行优化,在较短的时间内寻找到适合特定类型电池的神经网络模型,大大缩短了人工建模需要的时间,提高了模型对SOC预估的性能。对于三种不同类型电池的数据进行建模的仿真试验结果验证了本方法的有效性。

关 键 词:荷电态  非线性函数  遗传算法  神经网络
文章编号:1002-087X(2004)08-0504-04
修稿时间:2003-11-08

Adaptive genetic algorithm based on artificial neural network model for estimation of SOC of battery
LU Zhi-ying,PANG Yong,LIU Zheng-guang. Adaptive genetic algorithm based on artificial neural network model for estimation of SOC of battery[J]. Chinese Journal of Power Sources, 2004, 28(8): 504-507
Authors:LU Zhi-ying  PANG Yong  LIU Zheng-guang
Abstract:State of charge (SOC) is a complex non-linear function concerned with discharge current, terminal voltage, temperature and so on. And for the reason that the battery performance varies greatly from one type to another, it is difficult to construct a unified model of SOC. The most popular method need a lot of experiments to find the proper model of the SOC. To overcome the shortcomings of the traditional method, a novel design of adaptive genetic algorithm based on artificial neural network model is proposed to model the SOC of different type of battery. This adaptive model can find the proper artificial neural network model for a special type of battery, within a short time. The simulation results of different types of battery verified the validity of this adaptive modeling method.
Keywords:state of charge  non-linear function  genetic algorithm  artificial neural network
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号