首页 | 本学科首页   官方微博 | 高级检索  
     

基于平稳小波包分解和希尔伯特变换的故障特征自适应提取
引用本文:刘毅华,王媛媛,宋执环. 基于平稳小波包分解和希尔伯特变换的故障特征自适应提取[J]. 电工技术学报, 2009, 24(2)
作者姓名:刘毅华  王媛媛  宋执环
作者单位:1. 浙江大学宁波理工学院,宁波,315100
2. 浙江大学宁波理工学院,宁波,315100;浙江大学控制科学与工程学系,杭州,310027
摘    要:提出一种自适应地提取信号特征分量的故障检测方法.采用逐层推进的平稳小波包分解算法,运用希尔伯特变换,在对信号进行小波包分解的同时,对分解结果进行瞬时频率和瞬时幅值分析,根据设定的分量提取和信号分解规则,实现信号分解路径的自主搜索,自适应地构建信号的小波包分解树,对信号进行多分辨率的频谱分析,达到信号消噪和特征分量提取的目的.仿真研究表明该方法的分量提取规则简单、目标明确,信号分析结果简洁,具有运算时间少、数据存储量小的特点和良好的抗噪性能,所提取的故障特征分量的时-频-幅值信息清晰、易于检测.

关 键 词:平稳小波包变换  希尔伯特变换  自适应信号分析  多分辨率频谱分析  故障检测

Adaptive Fault Feature Extraction Based on Stationary Wavelet Packet Decomposition and Hilbert Transform
Liu Yihua,Wang Yuanyuan,Song Zhihuan. Adaptive Fault Feature Extraction Based on Stationary Wavelet Packet Decomposition and Hilbert Transform[J]. Transactions of China Electrotechnical Society, 2009, 24(2)
Authors:Liu Yihua  Wang Yuanyuan  Song Zhihuan
Affiliation:1. Ningbo Institute of Technology Zhejiang University Ningbo 315100 China 2. Zhejiang University Hangzhou 310027 China
Abstract:A fault detection algorithm is proposed to adaptively extract the characteristic component of fault signals in this paper. The algorithm used one-level stationary wavelet packet transform to decompose the signal into low-and high-frequency subbands, whose instantaneous frequency and instantaneous amplitude are calculated by Hilbert transform at the same time. Based on the preset rules of component extraction and signal decomposition, the algorithm adaptively selects the path of stationary wavelet packet dec...
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号