首页 | 本学科首页   官方微博 | 高级检索  
     


Implementation of an in‐field CMOS frequency division multiplexer for 9.4 T magnetic resonance applications
Authors:Mazin Jouda  Oliver G Gruschke  Jan G Korvink
Affiliation:Laboratory of Simulation, Department of Microsystems Engineering, IMTEK, University of Freiburg, Freiburg, Germany
Abstract:This paper introduces the implementation of an application‐specific complementary metal oxide semiconductor frequency division multiplexer as a novel solution to interface magnetic resonance (MR) phased arrays of micro‐detectors to an image‐processing unit, thus reducing the complexity and space issues associated with MR detector arrays. The frequency multiplexer, in a compact 3 × 4 mm silicon die, is designed to operate at 400 MHz, which is the Larmor frequency of 1H protons in a 9.4‐T MR imaging system. The system implements eight channels, where each channel consists of a low‐noise amplifier, a frequency mixer, and a band‐pass filter. The maximum gain of an individual channel after the band‐pass filter stage is 38 dB. The suppression of the local oscillator ranges from 40 to ?51 dB, and the maximum coupling between channels is ?39 dB. The input dynamic range of an individual channel is 8 mV. Each channel consumes 54 mA from a 3.3‐V source. The chip operates without errors within a high 9.4‐T magnetic field. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords:CMOS  multiplexer  high field  MRI  phased arrays
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号