首页 | 本学科首页   官方微博 | 高级检索  
     


A multi-camera based photogrammetric method for three-dimensional full-field displacement measurements of geosynthetics during tensile test
Abstract:Conventional methods for measuring the deformational response of geosynthetics, such as the linear variable differential transformers (LVDTs), strain gauges, and extensometers have several limitations in fully determining the complete strain distribution in geosynthetics. This paper presents a multi-camera based photogrammetric method to track the 3D full-field displacements of geosynthetics during tensile tests. The proposed method extends the conventional one-camera based photogrammetry for static object measurements to multi-camera-based photogrammetry for object measurements with continuous movements or deformations. It is non-contact, cost-effective, highly accurate, and capable of measuring the 3D full-field displacements of the geosynthetics. A tensile test on a geogrid specimen was performed to verify the effectiveness and accuracy of the proposed photogrammetric method. The results from the tensile tests using both the proposed method and conventional methods, such as machine-controlled displacement measurements and extensometer, were presented and compared. It was observed that the average absolute difference between the proposed photogrammetric method and the machine-controlled movements of the bottom clamp was 0.25%, and the average absolute error was 0.038 mm. The average difference in measurements made by the proposed method and extensometer was 0.07%. It was further found that the proposed method can provide more comprehensive input, such as the complete strain and modulus distributions in the geosynthetics, for a probability-based geosynthetics design.
Keywords:Geosynthetics  Multi-camera-based photogrammetric method  Full-field displacement measurement  3D deformation  Dynamic tests
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号